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SECTION I

INTRODUCTION AND OUTLINE

In recent times there have been many attempts at extend ing

the analysis of stationary time series to classes of nonstationary

cases. The fundamental spectral analysis , so useful for the

stationary series , does not play such a central role in the general

study. The necessary tools and methods for an analysis of the

latter are different and altogether less refined , and s till appear

more complicated . However , from the point of view of appli cations ,

the analysis of nonstationary time series is perhaps more realistic .

Consequently ,  some results based on certain asymptotic consider-

ations related to a ‘correlation characteris tic ’ (to be defined

below) will be presented in this paper. Also included is some

other work on classes of linear stochastic (or autoregressive)

equations in discrete as well as continuous time . An

outline of the results will be useful here , since it gives the

reader a bird ’s-eye view of the treatment.

Instead of totally abandoning the spec tral point of view ,

Kampé de Fériet and Frenkiel in 1959 have , in a remarkab].e paper ,

introduced a class of nonstationary time series (to be called

class (KF) hereafter) for its covariance analysis (cf. [1]).

There they studied in considerable de tail a model which is of

the form signal plus noise , where the signal is a time series with

zero means and a periodic covariance and the noise is a stationary

series with zero mean . A detailed numerical study was made to

illustrate the usefulness of this class. Also only s l ightly

1

- __,~~ _~ I~~ r~~o_ 5 
~~~~~~~~~~~~~ ~~~~~~~~~ 

~~~~~~~~~~~~~~~~ ‘~~~~ ~r~ ’ - - — — -

~~~~~ 
- “- -. - —



later , but independently, Parzen [2] has considered such a model

briefly and termed it t1 asymptotically stationary .” This class (1(F)

has been discussed in some detail by Bhagavan [31 in his recent

dissertation . There one of his main results asserts that the

class of harmonizable time series belongs to class (KF) , and

then an ergodic theorem was obtained. In Section II below , the

class (KF) has been further analyzed and a more inclusive (new)

almost harmonizable class was introduced and shown to be of

class (KF) . This contains the harmonizable case , but the gene-

ralization gives a better insight , and shows the simplicity of

class (KF) . The consistency of an estimator of the averaged

mean function and a weak law of large numbers are es tablished.

It is of interest to remark that the classical spectral theory

of stationary time series again plays a role here---perhaps just-

if ying the terminology of Parzen ’s noted above . There are some

relations between a class of series introduced by Cramer in (1951),

(cf. [4] ) , called class (C) , and (KF) though either does not

include the other. ~ comparison of these approaches is also ex-

pounded here, and these relations reappear at many places in the

res t of the paper.

Sec tion III is devoted to the covariance analysis of time

series governed by difference schemes with not necessarily con-

stant coeffic ients . Such equations are of interest in treating

trend and seasonal variations in various situations which are

typically (strongly) nonstationary (cf. Hurwicz [ 5 1) .  Under

some conditions on these coefficients , it is shown that such

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~~i~~~i1I TL~
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generated series belong to class (KF) . In general many do not.

Some of the latter cases have been analyzed in detail, in order

to understand the dependence , approximate recursion equation s for

sample covariances , which are the samp le analogs of the ancient

Yule-Walker equations , are presented when the coeffic ients have

linear “time trend .” For a descriptive study, correlograms (
the graph of (k,p

~~
(k)) where o

~~
(k) is the correlation of

wi th ~~~~ ) and certain approximations are considered . Even here ,

the computations become involved , but what may be expected in

higher order schemes is evidenced. Some other results on esti-

mation and limit behavior of normalized sums are also inc luded .

The continuous time analog of the preceding work refers to

the behavior of flows . This is considered in some detail in (the

final) Section IV. The correspond ing schemes are stochastic dif-

ferential equations whose coeffic ients are functions of time . The

importance of a class of these schemes in industrial applications

has been reported by Hartley [6]. If the coeffic ients are con-

stants , they represent the motion of a simple harmonic oscillator ,

driven by random (or white noise) disturbance , and such a mode l

has already been discussed in 1943 (and in earlier classical

stud ies) in the important long article of Chandrasekhar [7]. The

latter type of equations have been analyzed by Dym [8], and

classified . The general time dependent case is much more in-

volved , and some propertie s of such an equation are stud ied.

Several results from the theory of ordinary differentia l equations

have special interest here . The basic sample function continuity

3
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of the solutions and the conditions under which they be long to

class (KY ) and the fact that they always belong to class (C)

among others , are established . A specialization of the case when

the coeffic ients are constants is illustrated , and the correlograin

is analyzed for its asymptotic behavior .

The results presented show how new prob lems must be attacked

for a more comp lete understanding of these time series. In par-

ticular , the classification of the solutions , analogous to [8],

will be very interesting. Some aspects of this for vector valued

time series have been already given by Golds tein [9], but the

samp le function behav ior when the dis turbance is white noise , as

in [8], has not been done . The feasibili ty of such a study is

s trongly indic ated in the present work . Similarly, many other

connections and scenic byways are noted but not pursued. Hope-

full y such work will be considered in the future .

It is recognized that , espec iall y in time series , no result

can be taken without adequate demonstration (or at least the ex-

planations that can easily be made precise). For this reason

essentially all proofs appear along with the staten~nts of results

if an adequate reference is not at hand . Consequently, readers

primarily interested in the results are advised to skip the proofs

and proceed with the statements , discussions , and remarks of the

paper .

TO

P1~
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SECTION II

A GENERAL CLASS OF NONSTATIONARY TIME SERIES

Let X = 

~
iX t , t I R 1  be a second order (real or complex) time

series with zero mean , and covariance K(s,t) = E(X
~~t
) . (The

expec tation E is on a fixed probabili ty space on wh ich X~ is

• defined.) Suppose that the K(.,.) satisfies th’~ following

cond ition :

T-j~~
(KF) r(h) lim -4S K(s-~~,s~~’)ds— T—= fh I/2

= (  lim i T_
~~ I K(s,s+JhJ )ds lim rT(h)), h~~1R

T-’= 0

where the limit is assumed to exist. This condition was intro-’

• duced by Kampé de Fériet and Frenkiel [1]. The class of time

series X satisfying the above condition will be called the

class (KF) , and it is analyzed in detail in what follows . It

will become clear that this class (KY) is suffic iently genera l

and is very useful in applications . The interest in this def i-

nition stems from the positive definiteness of rT and r , as

stressed in [1]

It is clear that , if X is (real and) stationary , so that

K(s ,t) K(t-s) , then r(h) K(h) = K(IhI) . Thus every

stationary process is in (KF) . If X = Y+Z , where Z =

is stationary (with zero mean) and Y 
~~~~~~~~

has zero mean and a periodic covariance (i.e. K~~(s-fh0,t+h0) 
=

K~ (s ,t) for some uperiod h0 “) E(Y
~~~
) = 0, dIR , then also

5
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X~class (KY) , but now X is evidentl y not stationary . in this

representation , the output X is composed of the “signal ” Y

and “noise” Z which are mutually uncorre lated , and the model

describes a commun ication channe l . An elementary example of the

Y-process is the following :
1~

= a cos 2~~t , tE~~ , (1)

where E(a) = 0 , E(a 2) = ~
2

>o . Then Y is nonstationary and

2 -

K~ (s ,t) = ~ —[cos r (t+s) - cos ii (t-s)] . In this examp le rT(h) of

2
(KF ) is given by rT(h) ~~~~~~~~~~~~~~~~~~~~~ 

so that X class

(1(F) . Also [f K
~
(t ,t+h)_a (h) as t—’ - for each h where

then (by the L ’Hosp ital rule ) it follows that

X:class (KY) . Another example of X in (KY ) is the important

nonstationary class called the harmonizable time series. Name ly,

if the covariance of K is denoted by K
~ 

, then it is repre-

sentab le as:

Kx(s,t) 
= e

] _ 1t
~~d

2 5 , ( ~~,~~) (2)

I -, where y(• ,.) is a covariance function of bounded variation on

the complex plane (or on the square (- ,r-]~~(--r ,--] if the time

series is of discrete parameter). Kx is then called a harmo—

nizable covariance . That this series X is in class (KF) is

nontrivial and it is one of the main results of the dissertation

[3] . There is a more inc lusive class of Cramer , to be called

class (C) , generalizing (2) ; it will be recalled here for corn-

parison with (KY) and for later use.

- - 
-
. -— -— --— - 
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i’he time series X = ~~~~~~~~~~ is said to be of class (C)

if it has mean zero and covariance K~ , representable as:

K;,(s ,t )  = :~~ g(s ,.~)~~~t ,.~)d
2
~~~ ,4 (3)

wbI~re 
- ,- is a covariance func t ion of bounded variation on each

fin i~~- d omain of the comp lex p lane , and ~g(t ,.),t- IR) is a

family such that the integra l in (3) exists. is then called

a covariance of t~ 2~~ (C) • Thus if v is of bounded variation ,

~;(s , - ) eL
~~ , then (3) reduces to (2). The problem now is to

find conditions on g and in order that X of class (C)

is in class (KF ) . The class (C) has been analyzed from the

point of integral representation by the author [101, and con-

siderable information is available for this family .

For comparison , it will he useful to s t a t e  the above-noted

result from [31 in the following form . It is seen to be inc luded

in a more generLil result proved next.

Proposition 2. 1. l e t 1< he a continuous harmonizable covariance .

Then

R(h) -- lim~~~
t h l K(t ,tHhl )dt , , (4)
0

exists and R(~) is a stationary covariance so that

R(h) = 
‘

~~~ e 1
~~~d F(~~) , , (5)

~~r a on tque distrthution F ( F(~~ )_F (_r) = R(O) ) .  Moreover ,

F’(~ ) y (~~~~ ,
s~~~) - v ( -~ ,-

•
- - ) (6)

~he re v is the covariance given in (2).

7
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In the discrete case there is a correspond ing formula (anal-

ogous to (4)-(6)), but the reiation (6) can be given a more de-

tailed form using the possible discon tinuities of y (It was

treated in [3].) The proof of this result uses estimates of

trigonometric sums for integrals on bounded rectang les ar ising

from ~e
1t
~~,tTIR ) . In the case of (3), it is clear that one

has to restric t the family ~g(t,.),t-~IR) regarding its growth

in relation to y - In general , the limit (4) for K ’s of type

(C) need not exist. Thus the class (C) is not inc luded in

class (KF) nor is the class (KF) contained in the class (C)

(See the examp le in remark following Theorem 4.2.) Some inter-

esting conditions on g will be obtained so that those time

series are in class (1(F)

Let g of (3) be a bounded (jointly) continuous function .

It will now be shown that , if g(•,X) is almost period ic for

almost all X (in particular , g(t ,)~) = e
1t

~ is automatically

included), then the corresponding class (C) ccvariance actually

is in (1(F) so that (4) and (5) are implied. It is necessary to

- - 

recall the definition of almost periodicity of g , depending on

the parameter X , to demonstrate the preceding statement .

Definition . Let D c i~J’ be an open (or a compact) set. A con-

tinuous comp lex function f on IRxD is said to be almost pen-

odic (a.p.) on IR uniformly relative to D if for each compact

set S c— D f(. ,x) is almost period ic for each x in S
TO

i.e. , for any ~ >0 , and each compact set S c D , there is a

number 
~~~~~ 

~0(~~,S)>O , such that each interval I r E  of

L 
8

V
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length £0 contains a number ~I for which

f (t+r ,x)—f(t ,x)~ c. , t l R  ,x S . (7)

The is called an s-translation number of f -

It can be shown that the set of all a.p. functions de-

pend ing on a parameter , satisfying (7), forms an algebra , and if

for x S  cD , and all t~ iR , then -
~~ is also

an a.p. function of the same kind . Thus the set I eLt/ , t~~IR ,~~ 1R

is inc luded in the above , and in fact properly. For an exposi-

tion of this class , the reader may consult Yoshizawa (111 1 ,

Chapter I). If D ~t} is a single point , then this definition

reduces to the classical concept of a.p. functions of Bohr. Also

observe that an a.p. function is only locally (i .e. on bounded

intervals) integrable. In fact , it is bounded for each x- S ~ 0

The follow ing is the desired generalization .

Proposition 2.2. Let K be a covariance function of type (C) , i.e.

one which  satisfies (3). Suppose t h a t  g ( , ~- )  of the i n t e g ran d  in

(3) is almos t periodic uniformly relative to I) = R and with

v as the covariance of bounded variation . Then the Lime ser i e s

x = rX
t ,t

~
IR) with zero mean and covariance K belongs to

class (C) class (KF) - More precisely ,

• R(h) = 1im~~~
T 1 K(t t+l h~ )dt 

= lim R1(h) , hd IR , (8)

- 
- exists and defines a stationary covariance on

Re mark. If g(t ,X ) e~~ , then the hypothesis of this propo-

s it ion  is sa t i s f i ed  by that of the preceding oi~e so t h a t  the main

9
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result (4) is a consequence of (8). Using the specia l form of

this g , it is possible to obtain (6) connecting v and the

3pectral distribution F of R . However , in the present ~‘eiwr-

alicy , such a re lation as (6) is much more involved .

Proof. By symmetry it suffices to consider h ~ 0 - Now subs t i -

tuting (3) into Rrr above and interchang ing the integrals (this

is obviously legal)

RT(h) =:~:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ( 9)

-= -(o 0

If S c IR is any compact set , and g(~ ,
)~~~) ,  ) ES  , is a.p. , then

it follows that g(- ,X)g(.+h,X ’), (~~,Y)’SxS , is also a.p. So

for any fixed but arbitrary h , one has by a classical resulu

(cf. Besicovitch [12], p. 15),

lim1 i lim~~~~~
T
~~g(t,)~)g(t+h ,~. f)d t a(h ;~~,\’) , (10)

T-=~’ T— ° 0

exists uniformly in h . But it is clear that a(h ;~. ,~~~~~~
‘)  is

bounded for all h~~O , (x ,~~’)’S<S since each a.p. function is

bounded. So from (9) and (10), together with Dominated Conver-

gence , one gets

R(h) = lim RT(h) 
= :r :~ a (h;x ,? ’)d2y (. ,

_, _ ‘
) - (11 )

T-.-

But for each T , RT
(.) is clearly positive definite and hence

so is R() . Thus R(.) is a covariance. However , due to the

compactness of S and the uniformity inv o lved in (10), it follows
I

that a(-;. ,-) on ~ --S~ S is a continuous complex function . From

this one easily concludes that R(-) is a (continuous) stationary

covariance and then the representation (5) is just the classical

1 10

.4
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Bochner ’s theorem . This completes the proof.

Comments. 1. Evidentl y one may prove an analogous result if the

Lime series is of discrete parameter. It should be observed that

the long argument of the harmonizable case of Bhagavan (cf. [3],

pp. 72-77) is really a specialized version of the existence of

the limit (10) and for the special g(t ,\) = c
it ( the “charac-

ters ” of l~. ) the mean value is given by the values of (10) on

the diagonal (ef. [12), p. 16, no. 4)) so that the simplifications

for (6) result. In the general case (6) no longer holds . Now X

is mean continuous , i.e. E (X
~

_ X
5 ) 2 _0 

, as s—t , so one has

onl y :

R(h) :~~:a (h;x ,y)d2v (- 
‘ 
‘) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ h-T IR , (12)

by the Bochner theorem. This F will be called the assoc iated

spectral distribution of X

2. The time series X = t X
~~
,t
~~

IR
~ 

whose covaniance K is

of type (C) (and E(X~
) 0 ) for an a.p. function g( ,.)

uniformly relative to R , may and wili be called an almost

harmonizable serie s. This clearl y includes the harmonizable

case. Under this generalization , one may profitab ly consider

the more inclusive Besicovitch functions g ( B 2-a .p. of [12]),

a.p. uniformly relative to IR , since for such functions the

desired limit (10) again exists. This follows from ([121, p. 93),

where one uses the fact that such g ’s form an algebra and then

Lemma 4 is app lied there in a slightly modif ied form (and con-

sequently the arguments on pp . 14-15 of [12] hold). This

11
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extension is necessary to show , for instance , that the Brownian

motion (which is not harmonizable) is covere d by the above . That

• the latter is in class (1(F) is easy to check directl y as observed

in [1] - Similarly the  Orns te in-Uhl enbeck pr ocess is in (KF) . Both

these are now almost harmonizable (g is not continuous , so B2

a.p. is needed!). It will be interesting to analyze this set

which is contained in class (KFYclass (C) . Here one should

perhaps also observe that , if g is B2-a.p. so that a (h ;~~, ) ’)-. 0

as J x l + L~’J = o suffic iently rapidly, then v need onl y be of

bounded variation on each compact rectang le of the comp lex plane .

3. It may also be remarked that g of (3) can be more

• general than that noted above for the existence of the limit in

(10). For instance , if g is locally (i.e. on compact sets)

square integrable , then g(.,X)g(.+h,x) will be (c,l) sununable

(i.e., in the sense of first arithmetic mean of Cesàro) while -v

is o f bounded v a r i a t i o n . Many good su f f i c ient condi t ions  are

available for it in the literature - This shows that

class (KF) class (C) contains even the almost harmonizable family

as a proper subset.

One of the key application s of the above result is in ob-

tam ing conditions for the weak or strong law of large numbers .

In a different terminology , this is equivalent to estimating the

mean (or the average of the mean function) of the time series X
TO

consiste ntl y. These problems are natural analogs of the well

known stationary theory (cf. Doob [13}, pp. 529-530). The fol-

~~ lowing is such an extension and it is substantially due to Bhagavan [3].
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H Proposi t ion 2 .3. Le t X = 

~
X
~
,t1R ) be an almost harmoniz-

able time series (which is mean continuous). Suppose that its mean

function in has the property that a0 
= lim~ .:Tm(t)dt exists

T-.= 0

where m (t) E(X ) . If th~, = 4~~T x dt (the sample path inte-
0

• gra l ) , then lim E (LIIT -a O ) 2 F ( 0 + ) - F ( 0 - )  , where F is the assoc-
T-~

iated spectral distribution of X (cf. , (12)) . In particular , if

F is con t inuous at 0 , then rnT is a strong ly consistent esti-

ma tor of a0 (or the series X obeys the weak law of large

numb ers when the lim it a0 exists).

Proof. I~et a = 
l
~~
Tm(t)dt , so tha t aT-.aO as T-= . ThenT 0

wri t ing K( s,t) = Cov (X5,X~
) , the covariance , and noting E(IIIT)

aT , one has .

E[(riiT
_a
T)+(aT

_a
O)1

2 
= 2(E(I

~~
_a

T ) 2+(aT
_ a

O ) 2
J

+ 2(aT
_a

O)
2

T 0 0
2~~T R (h)dh + 2(a -a )2 (cf. (8)). (13)• T T T T O

The last term of (13) tends to zero , and the first term may he

s implified as follows . If RT did not depend on T , then the

limit of the f i r s t  term of (13) is the desire d result , and it is

a classical theorem of Bochner (cf. Cramer [14], p. 25). Since

-
~~ by Proposition 2 (since X is mean continuous), R

T 
is a con-

tinuous positive definite function converging to a continuous

posi t ive def in i te  R which then has the representation ( 1 2 ) ,  a

simple modification of Bochner ’s proof establishes the present case

13
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Let FT and F be the bounded nonnegative nondecreasing

func tions representing RT and R , as in (12). Then RT(h)-R(h )

uniformly for h on each bounded closed interval and these are

Fourier transforms of FT ,F which must then be uniformly bounded.

Moreover F
T~

F at each continuity point of F by ([14], Thm.ll).

Thus

~
T
~~~T

T 
= :~~~~ T~~~~~~~~~~~~T

— sin Tx.~~
T u

~ T X

Since as T-.’-~ ~ 
is the delta func tion) and

F
T~
F the result follows easily. In fact , for each >0

SI-fl Tx dF
T

(x) = 
Sin Tx dFT(x) + S T X dF (x) - (15)

• The first two integrals on the right side of this equation go to zero

as T—’~ since I 1 ~~~~J -
~~~

-
~~~~ and FT(x) ~ sup FT(c)<~ - Let

e be chosen so that (F(-)-F(-~~)) - (F(O+)-F(0-)) ~/2 and that

±€ is a continui ty point of F - This can be done since the

continuity Set of F is everywhere dense in R - But j sin Tx1 ; 1

and if T is large then FT
(e)_F

T
(_€ ) differs arbitrarily

little from F(~ )-F(-~) , and it follows that the last term of (15)

differs from F(0+)-F(O-) by less than ~ - Since >0 is

arbitrary , one concludes that

lirn~~r~
T RT(h)dh = F(0+)-F(O-) lim~~~~

T R(h)dh . (16)
T- -T T-~ -T

The proposition now follows from (13) and (16). Note that when

~ F has a jump at 0 , the estimator rnT (of a0 ) is not

14
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consistent. This comp letes the proof.

Remark. Since the limit R and hence F are given only indirectly

from R
T , it is desirable to have conditions on 

~
IRT,T>O that

will ensure the continuity of F at 0 (or at any given point).

This will be true if RT(h)—.O as h-. - uniformly in T or if

IR T(h)Idh is bounded as a function of T - The first condition
0

ensures the statement in brackets (by the classical Riemann-

Lehesgue lemma) and the latter gives the continuity of F at 0

as the last part of (16) shows .

In view of the importance of and R above , the immed-

iate statistical prob lem is to estimate these functions , with the

consistency property , at least. (Assum e m 0 ; otherwise one

may consider the produc t moments directly.) Thus the natural

estimates are

- 

- 

RT(h) 
= 1~ T-h~~ g~~~~~ = 

~~~ 
Xt

Xt+h dt , ( 1 7 )

whe re X’
~ 

= X~ for 0-~.tsT , = 0 for t>T - Under the mean con-

tinui ty of the X , such tha t ~
TK2(t,t)d t , the estimator
0

R
T 

of (17) is well defined , E(RT(h)) 
= RT(h) ---an unbiased

estimator of RT - To fulfill the consistency condition , i .e.

for XEclass (1(F) , R
T

( h )— R ( h ) ,  h E I R  , in mean , one has to assume

somewha t more on X - The following sufficient conditions were

g iven by Parzen [2) (cf. also [1]). Thus consider:

(i) for each t , assume E(!X
~~I
4
) 
~ 

(ii) ~f

- • (t  , t , t , t ) = E(X X X X ) then is Lebesgue integrable

15
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on each bounded interval of , and (iii) if C
~~
(v) =

~
t Cov (X SXS~f~v~XtXt+v)dt (which exists by (ii)), then 1im C

~~
(v) =0

for each v~~ 0 -

If (i)-(ii i) hold then Var (R,~(h))-.O as T-.0 , for each

h -~ 0 , so that E(ã~~(h)-R(h))
2-.0 . This may be checked by a

direct computation (cf. also [2]). In [1] an interesting examp le

of a periodic covariance of a time Series consisting of symmetric

bounded random variables is given which satisfies the above con-

ditions . The accuracy of the approximation of the estimator with

R was then illus trated by a numerical example. The reader is

referred to this instructive case in [1] to gain an insight into

the generality of the class (KF) of nonstationary time series .

The next two sections will now be devoted to another class

of nonstationary series ( processes) generated by certain

stochastic difference and differential equations for wh ich a

different set of methods will be needed . The latter are related

to the “corre logram analysis ,” and these will be discussed .

16
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SECTION III

NONSTATIONARY SERIES GENERATED BY DIFFERENCE EQUATIONS

(a) Motivation. If X = 
~

X
~~, t E 1R) is a stationary time series ,

then the correlation func tion ( - )  is given by P~~
(h) o ( h )  =

Cov (X~~,X t.th ) /Var X~ , and is independent of t - As a function of

h , i . e .  of the j~~~, c(- ) is taken as an indicator of the de-

pendence of on ~~~~ for large h . Clearly - ( h )  =

Io (h)I~~l . Suppose that X is nonstationary , but is in class (KF )

In this case o
~~
(-) depend s on t , but for any a > O  , and hC~~

lim
~~T a (h) = lim 1~~~T-h 

= ~(h) (say). (1)
T-~= ~~~~~~~~~ K(t ,t)dt

a

Here R is the same as in (8) of the preceding section with

K(s ,t) Cov (X5,X~
) . Since R() is a stationary covariance by

virtue of the fact that XEclass (KF) , ~
( - )  does not depend on

t or a - Further , several properties of the time series X are

ref lected in the behavior of R and hence of ~ . In cas e that

X is stationary then ~ 
p - On the other hand , if limK( t .t+h) =

t

a(h ) exists (which is stronger than being in (KF ) ) ,  then the

limit  of (1) exists and one gets the same ~( - )  - This is a con-

sequence of known work in classical analysis . Motivated

by this observa tion, one may consider the behavior of ~T for a

class of nonstat ionary t ime series where

Cov(X ,X )

= Var X
~ 

, (2)

called hereaf ter the corre lat ion characteris tic of X - In general

17
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6 is not a correlation function , but asymptoticall y its behavior

is that of the latter (because of (1)) at least for the series of

class (KF) - In this section the time series governed by certain

difference (and in the next section differential) equations will

be studied . Some of the following materia l (in both sections )

appears in a very tentative form in the author ’s early study [15] .

(b) A setting of the problem. Suppose that the output of a noisy

communication channel follows a linear model of signal p lus noi se

type as follows. The output X~ at time t depends on the im-

mediate past up to k units linearly, anu then a white noise dis-

turbance enters . Thus

X
~~ 

= 

~~1
ai(t~~

t_ j +t t 5t +€
~ , t �l , (3)

where a~ (-.) are some (non-stochastic) functions of time specified

by the type of channel. This model may also be used for a dynamic

economic situation where X~_~ ’s are called “lagged value s” of

the “endogenous” variab le X~ or some times “exogenous ” variab les

also . Thus the signal S~ is a linear func t ion  of the pas t k

terms and 
~
s
~~

,t-
~
l) are assumed to be independent identically

distributed variables with zero mean and a finite variance (_ 2

say). Now to study the properties of X~ , the difference equa-

tion (3) may be solved by c lassical methods (due to D. Andre ,

1878) and the solution is given by the expression :

t-l t+k-l
X~ 

= 

~~~~~~~~~~~~~~ ~ ~
o(t ,i)ct.~ , t~— 1 , (4)

i=O i=O

where X~ = c~~, i -k+l,... ,0 , are the cons tant initial values ,

18
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and

i j—l

~o(t ,m) = 11 ak (t- 
I~D k ) , 0~m- - t ,k0 0 , (5 )

k1+-- 
.+k

~~
rn j l j r O  r

the sum ranging over all partitions of m into integers k1

(�0) (cf., Jordan [161, p. 588). For instance , if c~ = 0 and

a
~~
(t) = , a constant , then the complicated looking expressions

(4) and (5) reduce to familiar forms . To see this , let the

charac teristic equation of the difference equation (3), namely,

X~~~~~~t
1

X 
~
“

~~~~~~~~~ k 
(6)

have s imple roots X l,...,Xk . Then (5) becomes

k k
= c(t—m) = ~~~ ~~~t—m , l~m�t , ~ ~.=l . ( 7 )

j=l ~ j=l ~

The 6~~’s further satisfy

k

~~~ = 0 , t=0 , — 1 , .  - - , —k+2 - (7 ’)
j=i

For a discuss ion of this ca se , see Mann and Wald [17] and the

author ([18], p. 330). Let us now specify conditions on the model

in order that the time series X = [X
~
,t�lJ be in class (KF) ,

and point out instances when it is not in class (KF) but for

which of (2) has a limit as t—- . -

Since for an asymptotic s tudy the initial values are not

important , set c
~ 

= 0, i 0 ,-l ,. - - , -k+l in (4). Suppose further

that the a~ (-) satisfy
t

~ I-~(t ,m) l~ -~ M~~~ o 
, t - l  - (8)

m=O

~ Then from (4), since E(Xt ) = 0 , one f inds

19
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r(s,t) = E(X X
~
) = 

~~~ cp(s,m)cp(t,m) , 1~s—tS m 0
S 

____________

= ~2 ~ ~o(s m)~~(s~~~m) . h t ,s -

m 0

It follows from (8) that Ir(s ,s+h)J~ M for all h , and s~ l (by

the Cauchy inequality). Hence, for each h~ O

N-i
u r n  ~j~~- ~~ ~~~ r(s ,s+h) = R(h) (9)

s 1

exists (by the (c,l)-surnmability method ), and by symmet ry f or a l l

h - This imp lies the following statement .

Proposition 3.1. If a second order time series X = 

~~~~~~~ 
is

generated by the equation (3), and the a~ (-)’ s satisfy (8),

then the nons ta t ionary  series X belongs to class (KF ) -

It should be observed that the condition (8) does not in-

volve any mention of the roo ts of (6) even when the a1
’s are con-

stants . To understand the significance of (8), it is useful to

specialize. Let the a~ be constants and suppose the roots of

(6) lie inside the unit circle of the comp lex plane and are dis-

tinct. Let 5 max IX~~I so that 5 < 1  - Then (8) is automatic
.3

since

I ~~~ I~~(t .m)l
2 

= 
~~~ ~c(t-m)~

2 
= 

~~~ 
~~ ~~~~~~~ , by (7)

I m 0  m 0  m 0  j l -~ -~ -

k ‘l-’\ ~ ~t+l
-

~ L
j,j ’=l 3 3 \ l- ’~~x~~

k 2(t+l) k

~~~~~~~~~~ 

~~~~~~~~~~~~~~~ 
1_ 5

2 
~ l_ ~~

2 
)
; I 8 j

S
j~~ J =M0

<co -

20
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Thus the time serie s generated by (3) with constant coeffic ients

having  a l l  the roots  of its c h a r a c t e r i s t i c  equa t ion  d i s t i n c t and

lying inside the unit circle , belongs to class (KF) - On the

other hand , if at least one of the roots of (6) is on or outside

the unit circle (i.e. s�l ) then the resulting time series gen-

erated by (3) is nonstable or exp losive and will not be in class

(KF ) - This w i l l  now be i l l u s t r a t ed  by a fami l y of t ime series ,

inves t igated in the l i t e r a tu re.

Thus in the constan t c o e f f i c ient case of ( 3 ) ,  let 5 > 1

S = max~\j~ of (6). Then under the same (remaining) hypo thes i s
.3

as above ,

t
E (IX  1

2
) = 

~~~ k(t,m)1
2 

= 0(52t) , (10)
t=O

so that  (8) is v io la ted  strong ly .  This was shown by the a u t h o r

([19], Lemmas 8, 15). Moreover , by ([19], Lemma 9) one finds

Cov (X ,X ÷i-) 
_ 2

= 
V a x

~

t h- (~~0 ) , t- . - (11)

A s imilar  conclusion holds  if ~ 1,k 1 , for (10) ( E ( X
~~~ I

2
) =

0( t 2 ) ) .  These two cases imp ly that the limit demanded for (1(F)

of Sect ion II cannot exis t , and so these t ime series do not be-

long to class (KF ) . This examp le may be taken as a further

justification of Parzen ’s term “asymptoticall y stationary ” for

the series in classes like (KF) (cf. [2]).

The variab le coefficient case of (3) was found to be of in-

t~~rtst in some meteorolog ical app lications (cf. [5]). Consequently,

a class of simp le variable coeffic ient schemes will be investi gattd

21
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in some detail below . They will throw some light on the behavior

of the r e s u l t i n g  t ime s e r i e s .

(c )  A f i r s t  order model.  The co r re la t ion  cha rac t e r i s t i c, g iven

by ( 2 ) ,  is desi gned to r e f l e c t  the dependence of X~ on ~~~~
for large t and h - I t  was noted t ha t  t h i s  behave s asymptot-

i c a l ly (as t-. - 
) as a correlation function for members of class

(KF ) - How does it behave in the “exp losive ” cases? Equat ion (11)

give s an indication of the constant coeffic ient case. Here the

var iab le c o e f f i c ient model of f i r s t  order w i l l  be cons idered , for

a s t r i k i n g  i l lus rat ion . This is a lso  the  one proposed in [ 5 ] ,

describing a times series with linear trend , name ly,

X~~ = a
~
X
~ _ i +~

-
~ , a~ = a0 +ta 1 , t- - l , a0~ O . ( 12)

The series ~~~~ 1~ consists of uncorrelated random variables

with mean zero and variance ~2 , X~~ 0 , tcO (i .e .  the ini tia l

value s are zero).

The so lu t ion  of (12) may be obtained by iteration . Alte r-

t—l
nat e l y ,  let  P t 

= :a
~ 

so p 1 
= a0 - If we set = X~/p~

(12) becomes

= 

~t~~ t+1 t O  - (13)

If w~ w r i t e  = 

~t~ 1 , the solution of (13) (hence of (12)) is:

= 
- (14)

Hence for h - 0 , the covariance is given by

t 2
c n v (X

~~
,X

~~~~
) = 

~t~~t+h ~I , t 1 - (15)

i—U 
~~~
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Since Var X
~ 

is obtained from (15) fL ’r i i  = 0 , ( 2 )  becomes:

t:-fi-i-I

~~~~
O1) = = a~ . ( 16 )

i=t

This can be made arbitraril y large for lnrge h , for appropriate

a0,a1 (e .g. if a 0 -fa 1tl>1 ) . On the other hand , the actua l cor-

relation o
t
(h) is:

1

P t (h) 

(
~~~p 1/~~~pj~ 1) 

, ( 17 )

and p~~( h ) J —.a (h ) ( ~0 ) ,  as t-. - Thus for such time series

the correlation does not tend to zero for large t and large h -

The correlation characteristic 
~~~~~~~~~~ 

magni f i e s  t h i s  phenomenon .

The above computation also implies that the correlogram ( = the

graph of (h ,
~~~

(h) ), h�0 , for any t ) does not dampen as the

lag h increases if the coefficients contain a l inear t ime trend .

Since the same character is maintained in using 
~~
(h) instead

of c~~
(h)  and since 

~~~
(h)  is c o m p u t a t i o n a l ly s imp ler than

3 t (h) , it will be considered in what follows for a structural

study of the “exp losive ” time series. The resulting graph may be

called an approximate correlogram.

If the linear trend is rep laced by the reciprocal trend ,
a1i.e., a

~ 
= aQ +~.E~ , t - ~~l , then after a similar but more ted ious

computation one finds that still exhibits nearly the same

properties unless more stringent conditions such as (8) are im-

• posed . The details are omitted .

(d) Limiting behavior of normalized sum s from class (KF) - The

behavior of series given by (3), subject to a condition imp lying

23
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(8) , is rea sonable in tha t such ser ies obey the ce ntral limi t

theorem for dependent variables. Let S
n 

= X1
+. - 

~
+Xn~ X

~~~
=0 ,i~

..0 -

Suppose t h a t  ( i )  the €~~‘ S are indepe ndent and ide ntical ly d istributed

w i t h  means zero and variance ~2 , (i i)  the -o (t,m) = ~~m) is

independent of t (which is imp l ied by the case tha t a
~~
(.) of

(3) are constants), and (iii) 
~ 

-~(m)~ 
-
~~ - Under these con-

m l
d itions the following assertion obtains :

Proposition 3.2. Let the time series 
~
Xt ,t.~

lI
~ 

be generated by

(3) and let , moreover , conditions (i)-(iii) hold . Then
2

lirnP [S x~~~arS ] = ~~~~~
X e 2 du - (18)

Thus , Sn obeys the cen t r a l  l imit  law .

This resu l t  fo l low s from some known resu l t s  of Diartanda and
n

Anderson (cf. [20], Thm. 7.7.8). In fact , Xn 
= 

~
(m)e n_m =

m 0

where ~-(m) = 0(m), l-lm n , = 0 otherwise. Since the
m 0

Var S
are independen t and ide nt i ca l l y distributed , n 

n 
-. 
~ , as a

• .. simp le computation shows . This is sufficient to invoke the above

cited theorem .

The restrictive condition (ii) may be relaxe d in some cases.

If a
~
(t) = a

~~
+a

~
t 2

, t i  , then

• i-i

~‘(t ,m) = a
k (t)a (t-k1

) .  - .a
k (t -  1 1  k . )  , k =0

- .+k
~~

m 1 k2 i j=1 3 0

= 

~~
a
k

a
k

. - .a
k 

- 0(k) = -~(m) 
- 0(k) - (19)

24
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Hence

= 

~~~
(m)

~ t +O (~~ ~~~ t m
) - (20)

One checks that the variance of the last term in (20) is o(.~.!~-)

It has mean zero . So if Sn 
= S~~+S~ , correspond ing to the

decomposition of (20), then S~-.0 in probability and Sn ,n
~
l ’

satisfies (iii). Hence, from a form of the classical Slutzky ’s

theorem, S~ and S have the same limit distribution . Thus the

following result holds :

Proposition 3.3. Let [X~ ,talI~ 
be given by the scheme (3).

Suppose that conditions (8) and (i) hold , where a~~(t) a
~

+ã
~
t 2

If ~(m) of (19) satisfies (iii), then the series obeys the cen-

tral limit theorem , i.e. (18) holds for this series.

It is clear that other conditions can be formulated on the

coefficients a~ (t) , to obtain correspond ing results. Assuming

that the €
~~

‘s have four moments , this result with a sketch of

proof was ind icated in [15), us ing Lya pun ov ’s theorem somewhat on

the lines of Marsaglia ( [ 2 1 ] ,  Thm . 3). However Parzen ([22],

p. 254 ) has a better result on these problems .

(e) Approximate recursion equations for sample covariances.

Since the difference equations with coefficients depend ing line-

arly on time have been noted to be of interest in describ ing trend

variation (cf. [5]), it will be useful to have recursion formulas

for computing sample covariances from data , even though the serieo

is not in class (KF ) . Here an account of this problem will be

25
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presented tor a first order scheme . Similar results for the

higher order scheme s are much more involved computationall y. The

recursion equations are just the samp le analogs of the anc ient

Y u l e - W a l k e r  equa t ions  of the au to r eg re s s ive  sys t ems  ( c f .  [20]

p. 174). These (sample) equations are useful for a descriptive

study of time series.

Consider a time series define d by the equation

X~~~~1 
= (a0 +a it)X~ 

+€ t+1 , t-~~O , (21)

where ~~ ‘s are independent , identically distributed mean zero

random va r i ab les  wi th  f i n i t e  variance , X~ = 0 for t-;O so that

there  are no records of the series for  the past  and it s t a r t s

from scratch. Here a0 and a1 are unknown parameters and can

be estimated by the least squares method . Thus a s imp le minimiz-

ation based on N observations gives 
~~ ON ,~~~ lN as the estimators

of a0, a1 by the following equations :

aON ~~~~~~~~~~~~~~~~~~~~ 
- (~~~t 2x~)~~~~xtx t+l) i

• a lN = 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~ , (22)

— 2 
2 

~~
-. 2 ( 2 2’-DN — - tX ) — ( ~X~ ) 

~~~ t X t )  -

t=l ‘t=l

It is desirab le to establish the consistency of these estimators ,

i.e., to show that âlN-.al, i=l ,2 , in probability as N-.-~ - This

is true if a1 
= 0 - The work in ([18], Thm. 5) and [19 ] )  m di-

cates that the general statement is true under some conditions on

the  d i s t r i b u t i o n  of ~~~‘ s - The a c tua l d e t a i l s  are n o n t r i v i a l

2h

( S

~~~~~~~~~~
-
~~~~~~~~~~~~L~~~~~ - ~~~~~~~~~~~~~~~ -~~~- -  ~~~

-
~~~~~~~~~~~~~~~

-
~~~~
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~~~~~~~~
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-:



-~~

and w i l l  not be considered here. Since the genera l behavior of

the series can be understood to some extent from the properties

of the correl&tion characteristic (or the approximate correlograrn

of the series) the samp le produc t moment equations will now be

derived for this model. This alread y shows the difficulties involved .

It will be convenient to adop t the following notation , from

[5], for simp lifications . Thus set (with X~ = 0,c-0 ) for t O

Z
1~ 

= X~ , Z2~ 
= tX~ , = l ,o,~ 

= -a0,s 2 -a1 . (23)

Then the equation (21) becomes

S
0
Z
lt+l

+
~~i

Z.
t
+S

2
Z
2t 

= £
t+l , t~~O - (24)

For the product moments , the follow ing additiona l abbreviations

are seen to be useful.

N-k N-k
E
N 

= sN 
= 

v~ Z Z i=l 2
k 

~~1
t t

~~ 
‘ ik 

t~~l 
~~~~ it+k ‘

N-k N-kN _~~~~~~~
—‘ N

12k — 

t~~l 
It 2t+k ‘ 21k 

— 
2t it-I-k - (25)

Since = 1 , using (24), one gets after a small computation :

5 l51k+1 + (l+
~~~~~

)S
~~~k 

+ 
~ l
S
~~k l  + ~~~~~~~~~~ 

+

~2 i2k-l~~2lk+l~ 
+ 

~~~~~~~~~~~~~~~~~ 
= E~ - (26)

But S
~ 2k S

~~lk +kS
~~k • So (26) can he simp lified as:

~ l
5ik+l +5

~~k
(l+5

l~~2
k+

~~~
) + Sik 1(5 1

+(k-l)F 2 ) +

+2~ c N +~~N 
=2L 2lk+1 1 21k 21k-l 2’2k-’ k

This is the sample analog (for k~ l ) of the Yule-Wa l ker equation

of [20) above. Note that ~E ~~~~ is a series of uncorrelated

~~ random variables.
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If the “initial point ” 
~ 

of the linear trend is known a

priori , then (27) can be recast in a better form . For then , if

we set = X t +~ 1X t i  ‘ 
= X

~~~1
+S

i
X
t ‘ ~ik 

=

(27)  can be expressed after a small computation as:

~l
Sik+l + S ik(~~~ l~ 2~~ 

- Sik+l (o l (k_l)
~ 2
) - S

~ k 2  = 

~ik+l 
- (28)

Treating Q
~k

’s as the correlated disturbance , one notes that the

p r od uct  moment equation of the first order scheme (21) (or (24))

is a third order difference equation whose coeffic ients depend

(linearly) on the lag . If C~ = 
~~~~~~~ 

Q~ 
= 

~~i~~ ik , then (28)

reduces to an equat ion of samp le cova riances :

+ (l+~ 1~ 2k)C~ - (~~1
-(k-l)~~2)C~~~1 

- C~~ 2 
= Q~~ - (29)

Taking expectations of this equation , one gets the Yule-Walker

r e l a t ions . If 
~2 = U (so there is no trend), then (27) and (29)

reduce to a correspond ing known ( s tanth ird ) case ( c f .  [ 2 0 1,  p .  124).

Similar considerations with a reciprocal trend (i.e. at =

a0 + -
~~~

- for (21)) lead to the pr oduc t moment equa t i on s , corre-

spond ing to (27) or (29), with coefficients depending on the re-

ciprocals of the lag . (This and a second order scheme were con -

sidered in [15], but the computations are too long for a treatment

h e r e . )  From (29) one can eas i l y ob ta in  the c o r r e l a t i o n  charac te r -

i s t i c  
~N (k)  = —

~~ 
, and then graph the approximate correlogram .

CO

An exp licit expression for this can be obtained from (29), by the
M

method indicated in (4)-(5). A formula for C~ is given below

from (29) without the intermediate computation. Let  f
0 

= t 1 =-a 0

28
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f1(k) = 1 + o 1~~2
k = l+ka 0a1 , f2(k) = -~~1

+r
2
(k_l) = a0-(k-1)a1

and f3 = 1 - Then

k
C~ 

= 

m~l

m 
t1
0
~1~ 

- - 
~t~~~ i~~~k-m 

(30)

where (i) t1+~ - -+t~~ = m , (ii) k
1 

k, k2 
= k-t 1, k3 

= k-t 1-t2
etc . The graph (kl,~ N

(k)) ,l�k<N) , for large enough N , gives

an indication of the dependence behavior of the t ime series de-

scribed by (21), by the earlier treatment.

I’
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I- I ~~ IV

SERIES ~t-:NERATED BY DlFFERE~ IA I, EQUA’lTONS : FLOWS

(a~ Introduction . The preceding ana lysis leads to the continuous

t ime analog (or the stochastic differential equations case) of the

problem involving again nonstati ,narv time series . This is useful

both for a comparison with the discrete case above , as we l l  as

for an independent stud y. It also i.rings up some interesting new

proniems .

Let 
~

X t , t~~
’l’ ,T~~

I
~ 

be a con t inuous  pa rame te r  t ime ser ies

( X~ and X(t) are synonymous ) governed by the differentia l

equa t ion :

2 -d x~t) + a(t)0~~ t) +b (t)X(t) ~ (t )  ( 1)
dt

wh ere ~-(t), r~ T is the white noise disturbance and a ,h are

real functions on -r . By definition of white noise , -
~ ( t )  is

the (generalized) derivative of Brownian motion ~B(t),t~ T ; and

thus (1) is a sym bolic equation which cannot be interpreted in

the  c l a s s i c a l  sense of d i f f e r e n t i a l  c a l c u l u s . (Such a p r o b l e m

does n o t , ~f course , a r i se  in the  d i s c r e t e  c a s e . )  However , the

c l a s s i c a l  comp ’:~ a t ion s  ca r r ie d out  f o r m a l l y can he j u s t i f i e d  (in

the integrated form ) with the concept of a stochastic integra l

rep lac ing £ ( t ) d t  b y d B ( t )  , and this will he made p rec i se

oelow . Potential app li .-ations of t h i s  rn~ d e l  abound . Taking a = 0

h ( t )  h ’~~~” t , Hartley [6]  indicated an i n d u s t r i a l  app l i c a t i o n

and c a r r i e d  out  a c rr e  lco~ran~ a n a l y s i s  ot t h e  X ( t  ) — s e r i e s  us in ~

classical methods (and forma l computations). In  f a c t , a s s u m i n g

•0
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t~l i a t  t u c  ~~~ ) is i t € - i r n l ’ l e  ( i :  t~ c-~~1cu1us ~~& o s e ) ,  l i e  has

~ ar r  l ed  out I t s  ana  ly s  is  is ing ‘ Ai cy ! ii t I s ” a n d t h e n  s tu~ i en

the  c o v a n i a n e c  -~i : t n 1 ct e r i s t  ic .  f l u  o cu i ~v c r : 3 t z Ii u t  t he  l N ~ ~~t t —

ings in Ames Iowa in l5~~7 , he rnent io i ied  t h a t  be l~c-b er d i  ~f e r en t i a  I

equation m c t h sl - : o u l O  be u t  t e t -  s i l t e d  for  S u(O i a problem . I If

a , b a re c o n s t a n t s , t h e n a i-e l~~t e d  p r o b l e m  was cons ide red  by

Nagabhushana in  ( [ 2 t ] .  p .  482) where  N ( t )  i s  ca 1l e d  a “p r i m a r y

p o o ce s s ” ob ta ined  b y an m y e rs  i o n .  S ince  the  Br ownian  m o t i~~n is

n o n d i f f e r e n t i ah l e  in  t he  c i~~s~~i c a J  sense so t h a t  t h e  s e t ) of ( I)

does  not  ex is t , a s J  i gh ly d i f f e r e n t  rou te  w i l l  be fc  I I  wed he re

to v a l i d a t e  su c h  an an a l y s i s  for  a s o l u t  ion 1 ( 1) .

( b )  A~~~~~er a I second o rdc -r~ prob L~ The m ethod  of a t t a c k  here

is q u i t e  s im p  I c  - Fi r s t  cons  i b r  t le prob  len: w i t h  a fo rma l man i p-

u l a t i o n  and express  t h e  s o l u t io n  in tern:s of an i nt e g r a l - if we

r op lao e  ( t ) d t  b~ dB ( t )  , where  I P, ( t  ) , t °T~ is t h e  t 3 r u wn i an

— 
motion , and the n interpre t the i n t eg ra l  as the  s t o c h a s t i c  in-

t e g r a l  of a n - ’ t i s t o c h a s t i c  (or “ sure ’~ ) func t Lou re lat ive t o  Browni •an

m o t i o n , the  so l u t i o n  is r i g o rou s ly  d e f i n a b le  [Of course . t I ~c

S ( t ) — p r c c - e s s  w i l l  n ’ L  he as genera l as in [ b i  , Sit  t h e  pot s~-~ t

a s su m p t i o n  w i l l  be in fo r ce  t h r o ug hout :  t h i s  s e nt  ion . F-o r a r i  o r -

us t r e a tm e n t , s ome suc h r e s t r i c t  ion is n e ce s s a r y .

I f s  diffe rent i al e q u a t io n  ( 1 ) ,  w r i t t e n  sy m b o i  i ca l  I v as

d X ( t )  + a ( t ) X ( t ) ~I t  + h ( t ) x ( t ) d t  = dB(t) . ( 2 )

is then re garded as the equation lead ing t o  u we! 1—defined solu —

~~ tion , where X(t) = 
~~
-

~~
- - In make this more precise , let T = [a05 h0

31
-4 

‘-:
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ - -

‘
~~~~~ ~~~~~~~~~ ~.T• ~~~~~~~~~~~~~~~~~~ 

- 

._. 
. L~~it~~ n~rniiJ ~~



r ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a bounded i n t e r v a l , and a ( - ) , b ( . )  be con t inuous real func t ions

ra(t) b (t)1 r B ( t )  1

on T - Set Q = X , A (t) , W(t) = j  , T ( t )  =
L _ 1  

~~~~~ 
L U

r~~~~(t )  Q(t)
L j and Z(t) = [ J - Then (1) may be expressed compact ly

0 X(t)

a s :

dZ( t )  + A(t)Z(t)dt = 
~i(t)dt 

= dW (t) - (3)

To solve this  (vec tor )  d i f f e r e n t i al  equat ion w i t h  a standard method

in the classical theory of ord inary differential equations , consider

the 2-by-2 matrix differential equation assoc iated with the homo-

geneous part of equation (3), i.e., the (nonstochastic) equation :

dY(t) = Y(t)A(t) , tET , det(Y(a0))~ 0 , (4)

where “det ” stands for de terminant. Then premultiplying (3) by

Y ( t )  and using (4) one gets

~~~~- (Y (t)Z(t)) = Y(t)o(t)

so that formally one has the solution of (3) as:

i t 1Z(t) = Y(t) Y(u)~i (u)du +y (t)y(a0
)Z(a

0
) - (5)

a0

The fact that Y(t) satisfying the equation (4), if nonsingular

for one tET , has the same property for all tET is used here .

This is because (4) implies det(Y(t)) = d et ( Y (a0) ) . e x p~~~~t race (A (u) ) )du)

(cf. Coddington and Levinson [24], p. 28). Thus (5) is well de-

fined and Z(t) is obtained as soon as Y(t) is solved from (4).

Since Y(t) 1 is bounded for each t , it can be taken inside

the integral also. Thus (5) can be expressed as:

32
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1 1
Z(t) = j~Y ( t )  Y ( u ) d W ( u )  + Y ( t ) Y ( a 0 ) Z ( a 0 ) , (6)

a
0

where the f i r s t term on the right is now rigorousl y defined as

the stochastic integral of the first kind (see Doob [25J, p. 352).

The uniqueness of the solution is immediate for the given initial

condition Z(a0) , because if Z is another solution , then Z-~

will be a solution of the homogeneous equation ~~ +A(t)U(t) = 0

wi th  U ( a 0 ) = 0 as the in i t ia l  condi t ion .  This is a nons tochas t i c

equa tion and the s tandard theory implies that U~ 0 is its onl y

solution . Thus Z = Z - Hence it remains to find Y(t).

Since (4) is a nonstochastic equation , one can app ly the

classical Picard method of approximation . Writing A = A ” , Y =

( * for transpose) and integrating (4), one finds

t
Y( t) = Y(a0) + A (u)Y (u)du - (7)

a0

Now substituting for Y and itera ting,  one ob tains

t~~ 
t l_ tn_ k

‘ ?( t )  = Y( a0)+~
’ A(t1)Y (a0)dt1+.-.+

’A (t1)
’A(t2) ---  A ( t )Y(a 0)d t . - - dt 1a

0 a0 a
0 a0

± R , (8)

where
t tt 1 n —

Rn 
= A (t1)

’A (t2
). - -

, 

A ( u ) Y ( u ) d u d t . .  - d t
1 

-

a0 a0 a0

By hypothesis a(-) and b(.) are continuous on the compac t in-

terval T - So A(t),, = ~
‘trace (A(t)A(t)) ‘i ” , t -~T , and

similarly Y(t), ~ N -  . [Here N is obtained as f o l l o w s . Let

be the linearly independent pair of vect or soluti~~ s of the

3-3
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h~ ’ili oge i Ieo : s equa t i n n  1) 3 )  - ~~ - i i  t 1 e~~e O Ot . C 0 t J i i U n U S  on T

It  N~ is the Upper ho- tad on t h e  ac-m is of the v e c t  or s  y~ -

1—1 ,2 , then I = (y .y2 1 in (Li ) so t h a t  -
~~/~~~~~~~ 

} Con —

S e3U 0 1 i t i y

(t - ~~3
0

)
’1

hI 0 N - — -
~~~~~~

— - - - - - -
~~

—
~

- —- , t~~~ - (9)

Uenc~ R - -‘ i ’  :iiiit4e ~t lv in t as ~~~ and he s e r i e s  i n  (8  c o n —
ft

‘.‘n cges absolutel y and uniform ly and d~ I a sct lut ion of (4) . In

t
particular , ~ i -a t t  , t u ) — A ( u ) o u  , t h o r :

to

r ~~~~ 
-

A (t 1) A ( t - ~) d t  I n 1 = A ( t  ) A ( t ~~~~~) d t d t
1 

,
~~ t

7~~~~ t ,~~~ ’ L  
-

,t
2
)A (t 2)dt

~~
. -- :x~~ t ,a0) , say .

d
0

~~~~t 2

I ~l~•
Simila iiy ~~, ( t , :i

0
) - A ( t )~~

’ r \ ( t 2 ) A ( t 3
) d t dt 2 d t 1 - i h e n  (8) c ar :

a0

be ex p r e s s e d  n o i r e  co~~v c n i e nt l y  (I: -’ set  a i l g  ~ 0 (t , a 0
) i d e n t i ty  ) a s :

= Y(L J 
~~~~~~~~~~ 

. n 1~)Y (a 0
) - (lot

As yes no spec ia 1 pr :ipert i t s  of Browi i an m a l l  on I o t h e r  t h an

the definition of (6), tvecc  i l t i  L : t - .~~. Le t Z ( ~1 ( )  C he a L O L l -

s t a n t  ( n o n s t o c h a s ti c )  i n i t i a l  c o n d i t i o n .  (The existence and

u n i q u e n e s s  of til e so ution of (3) rigorously bo I ls if on lv Z ( a n )

is independent 0 1 B ( t ) — B ( a 0
) - However , Snis is not  su f ~ i c - i ent

or  t:he to lowing ana lys is . ) A iso the cent i u i  b -’ o t a ( - and

b ( - ) L~ h o t C r u n  i a! - i t  a ( - ) , P ( . ) are lnte giab Ic 0 T , t h e n

14

‘-
4
‘4

: — — _ .__._—_--.- _ - .  — -- — - — - . - 
~~ — -,~“— -• - - -

~~~~~~~~ ‘ 
-_.- — .---

- - I - ~~--~~~~~~



OIL’ SeCS easil\ ’ t t i a t  t he  o un d  i i i  (~~i )  h o l d s  ~ct  a l so o~i j  , Prob lem

I p .  0 7 )  , and the rest of t h e  a r g u n u n t  is \‘aI ic  . T h u s  One no) -

St at e  th e  t i  i~ -wiu g simp le hut important result -

The ore m 4.1. Let 1 {a 1) . b0 ) be a bounded i i i  e r v u l  and b ( L ) , t - T;

be t h e  B r o w n ion  m o t i o n  - If X (L ) , t~~l~ is :i t i r i e  s e r i e s  g enera t  1d

by ( 2 )  w i t h  c t ( .  ) , b ( - )  as the  ( I e h e s g u L - ) i t l t e 4 r a r Je r ea l  l u : i ~ L i o n S

Ofl I i h e~ I l k  l e  15 one and onl y one s:ui sec ies  Io~ c - a eh  i n i t i a l

c o n d i t io n  X ( a )  c~ , X(c ) c 2 wl € - n e  c i , c 2 are  r ea l  c o n st a t i t s  -

X ( t )  
-

The s o l u t i o n  Z ( t )  = of  (3)  1:- g i v en  iv .- (6) w n u r e -  ‘I i~L y ( t )  - -

defined hi (10) ) I or r o v e r , [Z ( t )j  1 ) iS a e t o r  f i a r k ’~- ’ Ca :ssj:n

t i r e  S c - n 1 ( - s , a lm o s t  a l l  of w h o s e  trajectories ar e  c a n t  l I 1 L I OU S  -

Proo f  Be c a us e - of t h e  p r e c e d i n g  d i s L  u~- s f o n  and c a l c r : i a t i - - i i -~ , o n l y

l it  pro of of t he  l a s t  s t a t c - m e t i t  r~ rna l il s .  Note t h a t  by t Oe c l a s s i -

cal theory , the funct ion Y :T-- !i-(~ 
_ r ~~ i s  c o n t  j l l u~ i U S  and so also

is - By some we ll known properties of tilL SitO lle S t  ~ c t a s t  I n

i n t e g r a l s  (of. [131, Ch. h) the H i t i g r o l  ii (6) is a c : i l i n r :  a-;

t u n c t i o n  of  t with pr~ i cibi l i ty I - I t  f o l i ss t h a t  t~ Z (t  ) —

i > ~~~~~~~C~~~~~~~
5 has a l m o s t  a l l  c o u t i n a i l s  t r a je ct o r i e s with v~t 1 t-~ in k

By d e f i n i t i o n , t h e  i n l e g L a I  in ( 6 1  i -~ IL’ me an  scjuar e  l~~i~~ t

‘f appr v- - lniat!ilc sums of t h e  f o r i i - : ‘f ( 1 1 ) ( b ’ (t i i ) - h’ ( L i
) )  whe~:e

i= 1 -

a0 
t 1-:L 2 ~~~~~~~~~~~~~ . hu t  s i n ce Y l . i i s  n on st c h a s t i c  and

t L ( 5
1 + i ) — W ( t .  1 Ore i n k  p r u d e n t  G a u s s ia n  v ec to r s , I Pt : ~ i -  ~ve is

C ;iii s~;ian d i s t i : t o u t e d .  P . C  115 Ii j I  1 1 i ; d  n i t  t i . e  t h e  i nt e o r a l  i

t I e  1 L I 1 C S  ;t - du s s  m u  r a n d ;v n  - - t c ton . ~i i s  - /. t - i I ol

[r on (n )  t i t i  t i i ~~ 2 L ( t ) ,L~~i°- i~ a v e c to r  (~~~s s s i i u  t i u t i t - n e r i e o

_ _ _ _ _ _ _ _ _ _  
- z i’~± ~~~~ -~~~~~~~~~~~ _ _ _ _ _



having almost all continuous samp le paths. Finally, (6) is true

if a t is replaced by t ,t+h (h>0 ), a pair of points in T - Thus

t+h i iZ( t ) ‘ Y(t+h) Y(u)dW (u) + Y (t+h)Y(t)Z(t) - (11)
t

By the preceding definition of the integral , Z(t) is determined

by Y(t) and W (u) for a
0~

u - t only. Since W (-) has inde-

pendent increments , (11) is determined by W (t
~+i

)-W (t
~

) f or

t�t
~
<t1+1

� t+h , and is independent of Z(u) for a :u-z t . This

means for each interval A c1~
2
, t~ t0

P [Z t E A l Z ~~, Sc
~t 0 ] = P[ZtEAIZ O J , (12)

with probability one . But this implies the Markov ian property of

the Z(t) , and completes the proof.

Remark. In general  the Z-process  need not  be a m a r t i nga le  and

the X-pr ocess need not be Markovian . Note that  the cases a ( t )  =

a ’ +a ” t and b(t) h ’ +b” t (the linear trend , and s imi lar ly

the reciprocal trend if T [a 0, b 0 J , a0>0 ) is inc luded in the

above treatment. Another mode l treating seasonalicy (i.e. a(t) =

a1 +a 2 sin t , b (t) b~ +b
2 cos t ) of the coeffic ients considered

in ( [ 5 1 ,  p. 334) is also included . However , the latter case has

some spec ial propertie s worthy of a special treatment , but is not

- ~~- considered in the present paper. It is also clear that the above

theorem is valid without real changes if the order of the equation

is no2 . In that case the Y (t) and A (t) are n-by-n matrices.

From (6) it is easy to calculate the mean and covariance of

~~ the Z(t)-vector series . In fac t , if m( t ) = E ( Z ( t ) ),  ~T(t,s) =

Cov(Z
~
,Z
~
) , then from the condition that Z(a0) C , a constant ,
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one has :

m(t) Y ’(t)Y(a0)C . (13)

and

~ (s,t) = E f ( Z ( s ) - m ( s ) ) ( Z ( t ) - m ( t ) ) ~’ J
—1 — 1 *= E ( ( Y ( t )  Y ( u ) d W ( u ) ) ( ~ Y ( s )  Y ( r ) d W ( r ) )  I

a0 a0

= Y(t) Y(u)~~~~ JY~ (u)
1y~ (s)

1du , s ’t — ~ in ( s , t )  , ( 14)
a0

where an elementary property of the stochastic integral is used

in the last line . If D(t,u) is the first column of Y(t)’1 Y(u)

then (14) can be written as:

s A t
(a
~~ (s ,t)) = ~i ( s , t )  = 

~

‘ D(t ,u)D(s,u) ’du - ( 15)
a
0

This is the 2-by-2 covariance matrix function of the vector Z(t)-

series , wh ich is (hermitian) positive definite for all a0
;s ,tob

From this it follows immed iately that the covariance function of

the X-series ( r(s,t )  = Cov (X5 ,Xt) = 
~22 (s ,t) ) is given as:

SA t
r(s,t) (D(t,u)D(s,u) )02du (16)

a0

where ( ) is the second diagona l element of the matrix, If22
d(s,u) is the second element of the vector D(s ,u) , then (16)

is just

s~ t 
______

r(s ,t )  d ( s , u ) d ( t ~ ii)du . ( 1 7)
¼

Thus the time series determined by (2) is always of class (C) -
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it  is L n t t - r L - s t  i 1 L ~ t o  f l i t t O  ~~~~~~~~ t h e  c -o v ~l L i arR - c f u n c t i o n  r of

(17) is reilly H i t ’ Cj ~~~-n f u n c t i o n  o f  t ! -  : 1 g ~~ u l t - O U S  ord inary

( t i f i e r e t - t L a l  t~~h 1 i : i L  a of ( 1 )  w i t h  ,~ -r o  in i L i a l  c o n d i ti o r :~~, i . e.

~ (t 1 = \ (t ) = 0 at t = 0
0 

- This  u s e f u l c t - s u i t  ma ’ ’  i e  der ivc- d

as foll .-’s.

C oo l  h I ~~i- tin: h o m og e n e o u s  equal i o u

L H )  o~~<Li~ ~ a t ~ 
dX~~t )  + ( . i~~ t ) N ( t )  = 0 , ( H )

where X (a) = c 1, X (-a) = c2 , as t u e  ini t ia l data . If V
1

(a )  =

N
t ‘~~~~ (a ) w i - o r e  ~~~~ = X , = X = , t h en  b y t h e  s t a n d a r d

ht ory  (e L  ( d L t ] )  the spstem L(N ) = 0 and U
1
(a
0
) (1 has a

un i par s o l u t i o n , say V 1 - Simi 1 a n y  L (X) = 0 w i t h  Il l (a~1 ) 0 ,

U2
(a(1 ) = I has a unique solu tion V 2 . If C(~ , - ) is the Gruc-n

f unc n i - n  assoc iated with L(X) 0, X ( a
0) 

= 0 = X(a
0
) , t h e n  the

u n i que sol u t i o n  of (2) w i t h  the i ni t i a l  I cind i tion  Z(a) C is

g i v e n  ( c f .  Ince  [2 6 ] ,  p .  257 , and the discussion on the sb-

cl is t h o an a l o g  Follow ing (2)) by:

t
X (t) = ~ (t,u)dB (u) ± C V ( t )  , (19)

a0

~ V l C lw h e r e  V - and C , - Here G is c o n t i n u o us  on ‘f-TL \ 7 J

and d i l l  e r e n t  i a b ] e  ( in genera l  ( n — l )  t i m es  for the n th art ier

( - q u a t i ) l ) ,  and  i s  c o n t i n u o u s  in (t , u)  fo r  the range

a 0 t w b 0 - ~1 r €  ~v i - r ,

- ~-~- (u -~~, u )  = 1

Thus  from (19) one has  m 1
(t) = E(X(t)) = C ” V ( t )  , and

£4
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s~ t
r ( s  , t )  Coy H ( s >  , \ (~ 

)) (~ (s  , u ) GT E~~u~d Iu  . HO
n o

A c o m pa r i s o n  of I P ) — ( 2 0 )  w i  Ii] ( 16  — ( 11 s i u - n - n ~ I h a t  (: (s , u )  ci ( S  , u )

I l ie t o r n  u t  11: i s equa t i on  s I iou I~ a iso - i  c snj ;t r e d  w i  t l~ a ie sul

i f  (‘ na:~~-r (~ 27  I , P. 18) in ternus ol w l u i  ch  X(t ) In s muit j u l  i~ j t  y

no . (i - ar t h e -  -Jo f b ~ i t i o n  and prop erti es of t i e  Latt er , ci , (271.)

The p;e-~~u d  iu -ug  work  may lie  soilnuar ized in  t l ie  f o l l o w i ng

Theorem 4 .2 .  the vec to r  Gauss ian  M arkc v p r o c e s s  Z ( t )  , i -
~ i of

Theorem 4 .1 , has  mean and covar iance  give n by (13) an-i (15) .  The

solution process ~X(t),t-T ) of ( 2 )  is given by (19) w ith its

covar lan ce  f u n c t io n  by (20)  or (17) , and i t  is  of type (C) . i f

moreover , the  Green kern e C ( - , - ) of (20) sat j;-~-f 105 01] appro--

prlate growth condition , i i  p a r t i c u l a r  i f  ( :(  - , u )  is a .p. un i-

formly i n  u on compac t subsets of T , t hen  the s o l u t i o n  r ) c - i- ss

X(t),t~T~ is in c lass  (C) Tc lass  (KF ) -

Remark. If a ( t )  = a1 + a~ t - b ( t )  = h 1 + b 2 t . t h e n t b - c r e su l t  I n c

s o l u t i o n  process  in t h e  above’ i h e o r e n u , w h i l e  he i n c  in c l a s s  ( C )

w i l l  t au t  h€- in c l a s s  ( K b )  - In nor  case  t h i s  s o l u t i o n  h a s  n u l  t i  —

p li .c  I t y ” cue  in t l ie  sense  of ( f 2 7  I , p.  1 1 )  . T h i s  cr ib I c - n ;  and the

work of Section Il above show that the classes (C) and HI- )

are not inc luded in each -other.

In view if  c h i c  p r e c e d i ng  r e s u l t , it will be of considerable

int€’rest to a n a ly z e  ~nd extend the detaile d treatment of [ 8 }  f rom

the  co uistauit cueffi .c i t ’n t  case t o  t i le  genera l  case w h i c h  is ii

s o l u ti o n  p r o c e s s  of ( 2 ) .  Many of the results of [~~J have non—

trivia l eztens I n n s  to tile present one . It needs  and deserves a
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separate t rea tment  and w i l l  not be cons idered at present . In

the next paragraph a special prob lem is discussed for the properties

of its correlogram , as it enables a better appreciation of the

t ime serie s genera ted by (2).

(c) A special case. Let a(t) = a , b (t) = b , tET - Then Y(.)

can be calculated exp lic it ly in (10). For , A( t ) A = [
~ ~ so

* ~2 (t— t
0)

2

that cL (t,t0) 
= A (t-t 0), a2(t,t0

) = A 
2 

etc. and hence

= . n (t—a )n

y
* ( )  = ~ A~ Y (as) = (exp(t-a 0 )A~ )Y ” (a 0 ) -

n 0

Conseque n t ly (6) can be simp l i f ied to

~ ~t—u~A 
(a0-t)AZ ( t ) = e ” / dW (u) + e C , (21)

a
0

where the facts  tha t e~A and etA commute and Z(a
0
) C were

(t—u)A (d 1(tu) d2(t-u)used. From this , if e = 
cd 3(t-u) d4(t-’u)) 

, then (21)

yields

. t
X (t) = d

1(t-u)dB(u) + d1 (a0-t)c 1 + d
2 (a0-t)c2a0

X (t) = ~d3
(t-u)dB (u) + d3

(a
0
-t)c1 + d4(a

0-t)c2 . (22)
a
0

Compa r in g these equat ions wi th  ( 19) one obtains G(t,u) G(t-u)

. ‘ d 3(t-u) , and G ’(t-u) = d 1(t-u) where G is the Green function

associated with (2). (In the case of constant coeffic ients , C is

only a func tion of the difference of its arguments.) The covari-

ance is thus simplified to

40
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r(s ,t) = C(s—u)C(t-u)du - (23)
0

Even now r is not a stationary covariance , and the solution

process need not be in class (1(F) without further conditions.

In the particular case that a = 0, b>0 in (21) with T =

[0 ,~~) , the covariance (23) can be simplified further. Then ,

d
3(t) 

= sin fb t , and

s~ t
r(s ,t) = ‘ sin ~b ( t - u ) sin 1b(s--u) du - (24)

0

If t = s-fk , then the corre lation character i~5 (k) = r ( s , s + k )/ r ( s , s )

is reduced to:

5
sin /b(k+s-u) sin /b (s-u) du

= 

~~ 2 
, u~O

~sin /b(s-u)du
0

= 
2s/b cos /bk+sin /bk -sin fb (k±2s) (25)2s/b-sin2-~bs

For large s , f5
(k) therefore behave s as cos /b k , and henc e

the approximate correlogram is essentially a harmonic curve . The

above computation also shows that for small t , r(t ,t) =

2 b 3sin /b udu — -~-t - Similar estimates can be obtained for
0

- Such ca lcu la t ions  were carried out in ( [ 8 J ,  p .  135)

using different arguments , and both these results agree . The

Gaussian character of Z ( t )  , when a(t) = a , b(t) = b- -0 , and

various moments  have long been established in [7], with classical

techniques . It  w i l l  thus be interesting to carry out the corre-

sponding stud y for the case of variable a(.),b(-) , e.g., if
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t h l t t-i t; t a l e  pcri~iUic 01 nuore  ~~c c !~~~ l i i y  ( i a - a l)  : i u i a i y t  ri:  f u n c ti :o i i s

f l i e  r~ - s ulL  :1 l’l c - e ’rcm 4 .  [ i-11i  i t s  S 1 t i e - t d f l t  i til e : - : t e f l s i u u i s  f ur

ccc Lou valued p roc- t~ SS~~S u I i ~~ tI lt : 0 ) 0  f f i c  I c  ii t s  cdii  th en  he n i a cr i  u- ;

Va I u t  ci m I t -g r a b  l e  f u r c c 10115 - Suc h on €- :~ t ens  ion has  b e e - u i  c a r r i e d

- - U t t u ~ Ci~ 1d s t e i i i  ~9 I  u s i n g  suitable abst ract !fleilì~~i i s .  H i s  L c ~~

suit s snusume all the L o v i o u s  l y !;n~:wul e : - : i s t cn ~~c s t u d i e s  :11 t h e

p r o h i e n t , the natural Ii Ilt:5[ l i a  ie (C is t :n con s i d e r  (and t h i s  u p —

S r io re - d i f  i c u l t )  his re-su i ts  i n c l a s s  i f y i t u g  the  so l u t ion s  l i t

th~ Sc- isO ut !)vut ‘ s w ick
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